Subject programme

- 1. Subject name / subject module: Elective Subject: Analitycal mechanics
- 2. Lecture language: English
- **3.** The location of the subject in study plans:
 - Area or areas of the studies: Computer Control Systems Engineering
 - Degree of the studies: 2nd degree studies
 - Field or fields (implementation of effects standard): Mechatronics
- 4. Supervision of subject implementation:
 - The Institute / Another unit: The Institute of Informatics and Mechatronics
 - The person responsible for the subject: Szczutkowski Marek, dr inż.
 - People cooperating in the development of the programme of the subject:
- 5. The number of hours and forms of teaching for individual study system and the evaluation method

							Teac	hing act	tivities w	ith the	tutor							
Form																		Total
of classes Mode of study	•	sow	ECTS	Laboratory work	sow	ECTS	 sow	ECTS		sow	ECTS	 sow	ECTS	sow	ECTS	 SOW	ECTS	ECTS
Full-time studies				24	26	2												2
Part-time studies						2												2
Credit rigor				Graded assi	gmen	t												

6. Student workload – ECTS credits balance

1 ECTS credit corresponds to 25-30 hours of student work needed to achieve the expected learning outcomes including the student's own work

Activity (please specify relevant work for the subject)	Hourly student workload (full-time studies/part-time studies)
Participation in laboratory classes	24
Preparing reports	10
Preparing homeworks	14
Participation in an exam / graded assignment / final grading	2
Total student workload	50
ECTS credits	2
* Student's workload related to practical forms	50
Student's workload in classes requiring direct participation of academic teachers	24

7. Implementation notes: recommended duration (semesters), recommended admission requirements, relations between the forms of classes:

Necessary mathematics skills in order to develop knowledge in machine design.

Recommended duration of the subject is taken from the course plan.

8. Specific learning outcomes – knowledge, skills and social competence

Spe	ecific learning outcomes for the subject			Methods for testing of				
Outcome symbol	Outcome description	Form	Teaching method	(checking, assessing) learning outcomes				
	Knowledge							
K_W01	Student is able to define the basic concepts and phenomena of analytical mechanics.		Inquiry methods	Student learning activities				
K_W03	Student has an ordered, theoretically founded general knowledge that allows him to solve selected problems in the area of analytical mechanics.	Laboratory work						
K_W04	Student can provide simple examples of the application of analytical mechanics in the field of mechatronics.							
		Skill	s					
K_U01	Student is able to gather, intergrate, interpret, analyze and present information in the area of analytical mechanics.	Laboratory work	Inquiry methods	Student learning activities				

Subject programme

Social competence							
к_ко2	Student is ready to recognize knowledge in order to solve various problems in the area of analytical mechanics as well as is able to interact and work in a group trying to find the best solution.	Laboratory work	Inquiry methods	Student learning activities			

9. Assessment rules / criteria for each form of education and individual grades

0% - 50%	ndst	81% - 90%	db
51% - 70%	dst	91% - 93%	db+
71% - 80%	dst+	94% - 100%	bdb

	Activity	Grades	Calculation	To Final
	Reports	bdb(5)	5*50%	2,5
Act	ivity during classes	Example: db, dst, bdb(4,3,5)	Avg. (4+3+5)/3=4->4*20%	0,8
Н	omeworks	Example: ndst, bd, dst (2, 4, 3)	Avg. (2+4+3)/3=3->3*20%	0,6
A	ttendance	On 75% of all classes	10%	0,375

10. The learning contents with the form of the class activities on which they are carried out

(Laboratory work)

1. Movement equations: Generalized coordinates; principle of least action; principle of relative importance of Galilee; function of the Lagrange free point of material; function of the Lagrange layout of physical points;

2. Retention rights: Energy; momentum; Mechanical polarity;

3. Integrating motion equations: One-dimensional movement; Determination of potential energy from vibration period

4. Rigid body movement: Inertia peak; hard body momentum; Rigid body movement equation; Euler equation and equation; Rigid body contact; Principle of smallest action; Movement in non-inertial reference system ;5. Canonical equations: Hamilton equations; Routhha function; function as a function of coordinates; Maupertuis principle; Liouville drilling; Hamilton-Jacobago equation; Function of Routhha; Function as a function of coordinates; Principle of the Maupertuis; drilling of Liouville; Equalization of Hamilton-Jacobago; Distribution of variables; Properties of multidimensional traffic;

6. Mechanical vibration; Motor-operated movement phases; Pink vibration movement; Minimum operating principle; Free movement of the system with one degree of freedom; Force vibration of the system with one degree of freedom; Principle of smallest action

7. Vibrations in multi-degree systems

11. Required teaching aids

Laboratory classes - specialist laboratory

- 12. Literature:
 - a. Basic literature:

Hand L.N., Finch J.D., Analytical Mechanics, Cambridge University Press, 1998

a. Supplementary literature:

Fasano A., Marmi S., Analytical Mechanics, Oxford University Press, 2006

Lurie A.I., Analytical Mechanics, Springer-Verlag Berlin Heidelberg 2002

b. Internet sources:

Subject programme

http://homepage.sns.it/marmi/papers/Fasano,%20A.%20&%20Marmi,%20S.%20-

%20Analytical%20mechanics%20(Oxford,%202006).pdf, 12.2020

http://fy.chalmers.se/~tfemc/mekanikkompendium.pdf, 12.2020

- **13.** Available educational materials divided into forms of class activities (Author's compilation of didactic materials, e-learning materials, etc.)
- 14. Teachers implementing particular forms of education

Form of education	Name and surname
1. Laboratory classes	Szczutkowski Marek, dr inż.